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DRAG MINIMIZATION FOR WINGS AND BODIES IN SUPERSONIC

By MAX. A. HEASLDT and FRANKLYNB. FULLER

SUMMARY

The minimization of irwi.wid J%.@? drag k stu.okd for aero-

dynamic dtape.s sati.sf~”ng the condition$ of linearized theory,
and subject to imposed constrains on lift, p“tching moment,
base area, or volume. Z% problem is tran.qfonned to one of

determini~ twodim&md potential J?OWS satisfyi~ d.hw.

Lapike’.s or Poisson’s equatti m“thbowndarym?mw by
the impoeed conditwnc. A general method for determining
integral relations between perturbaiti velom”tycomponents ie
developed. fiis andysi.s i8 not re.sti”cted in appk?ation to

optimum CWCS; it may be wed for any WLpersonicw“ngproblem.
For gioen base area, general formukw are found that cover m

8peciul cuxes W“-cylindrical bodia of resolution, wings
hamng plan forms m“th fore-anokft symmetry, 815nder bodti,

cnd certain cla38e4 of yawed m“ng8. The drag cun in fact be
determined from a unidimens+md jho analywk in a duct of

know 8hape. For given volume, minimum mme drag of a
duded body of revoltiion of arbitra~ radiw is expres8ed in

chmed anulytic form. The eUiptic mung ti hated, and a po8-

m“blesource of a’@icuUy mnnezted with unreal shaptx in D-mm
volumeproblems iafound. In the cue of ducted bodiw of revo-
lution, the singularity distribution correqonding to the mini-
mum drq is determined.

Particularly 8imple TC8UU8are found for a family of w“ng8

m“th cuxved kzding edges with lift specij’ied and cenkr of prm-

cure jiwd at the 60-percent-chord poti-tion. General rei?atiom

for integrated loading along obliqw liw are derivedfor thti
family of m“ngs.

INTRODUCTION

To seek conditions under which the wave and vortex drag
of n given wing or body is minimized is to seek conditions
for economical supersonic flight. It is also a common ex-
perience, in the study of such problems, to find that a gratu-
itous economy appears to affect the analysis itself. Almost
invariably, simplicity characterizes the final forms of the
results in comparison with predictions carried out for wings
and bodies chosen with less discrimination. In the present
paper, the minimization of wave and vortex drag for various
aerodynamic shapes is studied. Some side conditions, such
IIS given bf t, given volume, etc., must be spe~ed in order
to set a meaningful variational problem for the shape at
hand. The side condition of given base area is noteworthy
as leading to reaulta with the simplicity mentioned above,
for, as will be shown, the general expression for minimum
drag assumes the most elementary form possible while at
the same time retaining the relevant parameters and being
dimensionally correct.

FLow ‘

The starting point of the present work was the expression
for drag given by G. N. Ward (ref. 1) in his study-of thin
lifting bodies, that is, wings and bodies for which linearized
supersonic flow theory applies.’ Work of this type was fit
reported by l~icobhy in reference 2, and detailed resuk
(refs. 3 and 4) have since become available. The body
shape is assumed to be enclosed by a characteristic surface
generated as the envelope of both the downstream-facing
Mach cones, with vertices on the forward edge of the body,
and the upstream-facing Mach cones, with vertices on the
trailing edge of the body. The drag (wave plus vortex.)
is then given by a surface integral of the induced velocities
over the downstremh portion of the Mach enveIope, and
other forces, moments, and geometrical properties are
similarly determined. This particular control surface has
analytical advantages similar to those exploited by R. T.
Jonw (refs. 5 and 6) in the use of combined flow fields.
Jones adopts a perturbation potential equal to the sum of
the potentials in forward and reverse flow. He then shows,
for example, that for a plan form of given base area the
neceswxy condition for *um wave drfqg is that the
pressure in the combined flow fieId be a constant over the
plan form. It follows that locally the combined flow
potential is a two-dimensiomd harmonic function. The
direct use of combined flow fields has been further extended
and applied by Graham (ref. 7), and is used in combination
with the control surface mentioned above by Germain
(refs. 8 and 9). Along the Mach envelope used by Ward
the perturbation potential in forward flow is equal to its
value in the combined flow field. Drag minimization then
determines conditions on the contiol surface, and the
potential on this surface differs from a two-dimensional
harmonic function by a lmown amount. The conventional
perturbation potential is retained, but the determination
of the body shape is still not direct. Mathematically, one
needs to invert an integral equation, and questions as to
existence and uniqueness of the solution arise. In the case
of ducted bodies of revolution of given base area or volume,
the integral equation will be solved explicity in a later
section.

When the eqmws.ions for the forces and moments and
geometrical quantities in terms of integrals over the same
control surface are known, it is possible to combine the drag
with one or more of the others, as constraints, and set up
an optimization problem. Variational methods then yield
the result that, in general, the potential in the control surface
must satisfy a Poisson equation in the lateral coordinates.
Inspection leads to a number of cases in which solution by
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analytical methods is poesible, and recourse to numerical
techniques is not required, though it is of course available
for more diflicult problems.

Finally, a method for generating integral relations among
perturbation velocity components is outlined. By these, ‘it
is possible to gain knowledge of aerodynamic loading on the
wing integrated along oblique lines. So long as the obliquitg
of the lines is such that the component of stream velocity
normal to them is supe~onic, the variation of the integrated
loading in the stream direction ii obtainable. The so-called
chord loading is a special case of these results. The span
loading is a by-product of the solution of the variational
problem, for this involves determination of the perturbation
potential in the rear Mach surface springing from the
trailing edge. Then, when the perturbation potential on
the trailing edge is known, the span loading is found directlj.

IMPORTANT SYMBOLS

A
c.
6!.
(z, c;

D
f(y,z)

!l

!7.

r
8
s
U.,v,w

base area of wing or body
drag coefficient
lift coefficient
curves bounding a region in ah x= const. plane (see

fig. 2)
drag of wing or body in a supersonic flow
function defining (by z=~(y,z)) a characteristic sur-

fac8 springing from a hailing edge
stxeamwise estent of wing or body
lift

()Ap
integral of local loading ~ along oblique line (see

.
eq. (66))

------- J

tangent of angleof sweep or yaw
Mach number in the free stream
pitching moment, positive for a nose-up moment,

taken about the line x=x=, y= z=O
inner normal to a plane curve
inner normal to a surface
pressure
load coefficient (upperauface pressure minus

lower-urface pressure divided by free-stream
dynamic pressure) .

local velocity

free-sham dynamic pressure,~ pmUa~

radial coordinate in asially~ymmetric problems
arc length
region in an z=const. plane (see fig. 2)
perturbation velocity components in x,y,z direc-

tions
speed of free stream along z axis
volume of a wing or body
Cartesian coordinate
ilim~—1
space curve (defined in fig- 1)
Lagrange multiplied (see eq. (11))
conormal (see eq. (18a))
density in tho free stxeam<
}surfaces

P perturbation velocity potential
x perturbation potential on surface z~j(y,z); X=

P~(Y,z),Y,zl

v’ two-dimensional Laplace operator, &+$

ANALYSIS

The following analysis is divided into several sections.
First, the geometrical quantities,base area and volume, am
expressed in terms of integrals over n given control surface.
Then relations for the lift, drag, and pitching moment are
given. These &sults can be combined in various wmys to
set up variational problems where drag is minimized while
one or more of the remaining quantities is held fi..ocl.
Finally, a method by which integral relations among tho
perturbation components- can be derived is outlined.

In all this work, it is aasumed that supersonic small-
disturbance theory applies. There is then a perturbation
potentiil function p(z,y,z)”rsatisfying the equation

Dz%- $%- %%.=0 (1)

where

The velocity components” in th6 coordinate directions aro
U.”+ p=,pr,p.. It will be assumed that the given body can
be represented by a planar or cylindrical reference surface,
the latter having directrices parallel to Oz, the free-stream
direction. Boundary conditions are to be satisfied on tlm
reference surface. In order to avoid difilculties concerning
gaps or holes in the body surface, it will be asaumeil thot
unique leading and trailing edges exist, and that the thick-
ness distribution fimction does not vanish between theso
extremities.

RELATIONS FOE BA8E AREA AND VOLUME

Consider a cylindrical reference surface as mentioned
above, and draw in the enclosing characteristic surfaces aa
show-n in figure 1. The reference surface itself is denoted
&. The envelope of Mach cones springing from the lead-
ing edge is’ 21, and the epvelope of Mach cones from the
trailing edge is 22. These surfaces, Z, and 22, intersect
along a space curve 171,as shown in figure 1. The relations

z

?IQDEEl.—Referenoesurfaoeand oharaoteristioenvelopingsurfaoes,
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for base area and volume of the body represented by the
reference surface 20 will be derived by applying Green’s
theorem to the volume bounded by the surfaces 2., 21,
and 2s.

The following form of Green’s theorem will be used:

whore
T
P, u, v
iv
v
Now set

volume bounded by ZO+ZI+Z
arbitrary scalar functions of position .
interior normal to a surface
vector dtierential operator, grad

( )F=p=p. I—JImz ~ to iht order
.

U=@= Umx+q(qy,z)=total potential

V= Cl?

The integral relation becomes

SSS Jsp(U.+Pz)k&ldr=-
JJS

/& ~;dx— &[V.(P=)] dr
r Z%+zl+zi T

and the last integral on the right vanishes by virtue of the
continuity equation for steady flow. The remaining quan-
tities are

SSS Js
koY-’p(Uco+qJ dT=- P2+$$ d~ . (2a)

r MZ,+zi

Tako first the case k=O. The left side of equation (2a.)
vanishes and one has

.The integral over 20is, to first order,

where 2=2(w) is the equation of the surface of the wing or
body. The integral therefore gives the increment in frontal
mea of the wing or body between the leading and trailing
edges, symbolized here as A;

A=
SS

g dx dy
X4

Next, consider the integra-lsover 2, and a. Let the surface
Z, be defined by the equation

Z=j(y, z) (3)
The normal IVto % has direction cosines

and the normal to ZI has clearly NI= l/ii.. Thus equation
(2b) becomes (since p=O on ZJ

P. U=A=P.
SS

(–t%%–~WJ–$#Z)dY dz
xl

An wsential simplification of this formula results if one
introduces the function -x(y,z) where

x= 9F(YF))Y,ZI

and z=-f(y, z) is the equation of the rear characteristic
surface &. Then, since

Xv= %fu+QtI; Xz= %jz+ (IJZ

and jU1+j .2=IP, the relation for base area becomes

A=–+
SS

Cik+fz@dydz

“8

(4a)

In equation (4a), S @ the projection,
the surface ~ on an z=const. plane.

shown in figure 2, of
& shown dSO, Cl is

z
i

Y

\

I?mmm 2.—Projeotion of rear oharaoteristio surface 2X in an x= const.
plane.

its outer boundary, or the projection of the space curve I’1
shown in @e 1, and Cl is the projection of the reference
surface of the wing or body. By application of Green’s
theorem, and the lmowledge that X= O on I’1, hence on (’l,
equation (4a) can be rewritten in the forms
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where
n interior normal ta curve in z= const. plane
8 arc length in z= const. plane

The formfia relating the ‘volume of a wing or body to
integrals of the function x follows by taking k= 1 in equation
(2a); one has -

J
v= fh(f,.s)d8-2+-

SS
x(v*j3+2p)dy dz—2+

J
xQf&

an .
cl s ‘G

(5)

where
v incremental volume of wing or body
h(j,s) deviation of body from control surface at trailing

edge
Equation (5) gives the volume of bodies that are either o~en
or closed at the base. The first integral on the right of
equation (5) may vanish for several reasons aside from the
obvious case of zero base area; in these cases the volume is
expressed as

v=–&-
SS ;. L’%a -(’a)

x(2&+ wy)dy dz——
“s

1
–SS= –2U. s

f~’ dy dz–~
Ss

X dy dz—
-s

Z& JIJ$& (’b)

It is worth noting that since neither base area nor volume
can be influenced by position of the center of coordinate, it
is possible sometimes to effect certain economies in aIgebraic
manipulation by a judicious choice of origin.

FORCE. AND MOMENT RELATIONS

Expressions for lift and drag forces are obtained by appli-
cation of the law of conservation of momentum in the
volume bounded by ~, 2,, and % (see &g. 1). The vector
force relation is

where

> vector force on body

; local velocity vector
+
N unit inner normal to surface

‘P local pressure

P local density

The force can be resolved into lift and drag components, and
the results consistent with linearized theory are (as given in
ref. 1)

L= –p.um
SS

X, dy dz
8

= p. u.
.S

x Cos (z)n) G%
G

SS
~= –~

J
ax

Xv%dydz-p ~2x &a% (8a)
s

(70)

(7b)

SS
=& (x:+xz’)dy dz

s
(8b)

The pitching moment is next found. The vector moment
relation is

where ~= is the vector distance between the moment center
and an integration element on the control surface. If only
the pitching moment is considered, with nose-up pitching
moment taken as positive, and moment center at (~, O, O),
the linearized result is

M= —p.U.
SS

xv’(zf )dydz–

If lift L=O or %=0 so that pitching moment is calculntmd
about the origin, one finds

M=–PJJ.
SS

xv2(zf)dy dz—Pmum
J

x ~ di (lOa)
6 %

=—p.u.
SS J

Zfv%dy (t&pmum . Zf @ d~ (lob)
c~+c~s

VARIATIONAL PBOBLEMS

The problem of ~ drag under the constraint o}
given base area, or volume, or lift, or pitching moment can be
set up with the aid of equations (4), (6), (7), (8), and (10).
It is only necessary to apply standard variational procedure
to any-of the expressions

}

I,=D–ti ~

I,=D+PV

I,=D–uL
(llj

14=D–TM

where X, ~, u, ~ are Lagrange multipliers. In the language of
combined flow fields (refs. 5 and 6) the Lagrange multipliers
yielding minimum dr~o can be identified with constant values
of the longitudinal and vertical velocity components or their
gradients. In this way, for example, Aand P are, respectively,
constant pressure and pressure gradient in the combined

.
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field. Less general interpretations may possibly be given the
Lagrange multiplied in speciiic classes of problems. One
such interpretation is given in the discussion following
equfbtion (40) of this report.

It is poesible to combine the variational problems with
each other. For example, if it be required to find minimum
drag with given base area and lift, the quantity to be mini-
mized would be D—M—uL and so forth. The results found
by applying the variational procedure to equations (11) will
be given next. Each is a two-dimensional flow problem in the
lateral variables y,z,
Given base area:

( JJ=f)=oks
v% x+—

&(x+*’)=o ‘na

X=o on Cl

D=; A

Given volume (zero base area):

(12a)

(12b)

(13a)

(13b)

where k is a constant to be determined by application of the
zero base area.condition.
@ven lift:

Vfx=o in s

:n(X+umuz)=o on Cq

x=O on Cl

D=; L

Givenp“tching momem?(zero lift):

v (x+u.Tzf)=o ins

X=o on Cl

D=–; M

(14a)

(14b)

I

(15a)

(15b)

where k is a constant to be determined by the condition of
zero lift.

In each of the problems listed in equations (12) through
(15), the possibility of obtaining a solution depends largely
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upon the bound~ curve Cl. Several cases where exact
solutions are obtainable will be treated in later sections.
However, recourse to approximate methods is usually indi-
cated. One approximation in which the wing is distorted
slightly in order to obtain a boundary curve C, for which the
two-dimensional problem is solvable is discuesed in refer-
ence 10. Germain (ref. 8) has used development in series.

INTEGRAL RELA~ONS BBTWZEN PERTURBATION
VBLOCITY COMPONENTS

Some useful and interesting relations between integrals of
the potential function p taken across the reference surface
20 to integmls of x in G (see fig. 1) will now be derived.
These results are not specialized to minimum-drag solutions,
but apply to any case. Coneider a planar, supersonic-
edged wing, and choose a line in the wing plane (z=O) that
cuts the z axis in (%,0,0) and which makes an angle M with
the yaxis; -

z—~ tan ~=~ (16)

Further, let the angle ~ be such that tan ~</3, making the
normaI component of free-stream velocity always supersonic.
This line will always lie in the supersonic “zone of silence”
corresponding to the point (a, O, O). Under this condition,
a plane, %, tangent to the Mach cone springing from
(ZO,O, O) can be made to pass through the line given by
equation (16). This plane is (in a notation introduced by
Hayes, ref. 11)

x—p Cosey+p sin 92=2!0 (17)

where p cos O=tan ~. The resulting situation is shown in
iigure 3 for the case of a sonic-edged wing.

FIQURE 3.—Charaoteristio plane outting wing and enveloping surfaces.

If Green’s theorem for equation (1) is applied to an
arbitrary region enclosed by a continuous surface 2, the
fundamental integral relation

Ss
A ~dz=O

z
(l&L)
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results. The derivative h@v is the gradient of potential
along the conormal v with direction cosines Vl,v2,usthat are
related to the direction cosines nl, %, ~ of the inner normal
to the surface 2 by the equations

—&nl=Au, %= Au, %=Av3

Consider now the region bounded by ~, 21, and %, and
in which z>O (in fig. 3, %, 21, %, are defined as in fig. !;
>8 is the plane of equation (17)). On ~ and ~, it is easily
found that A=~, and on 2., A= 1 l?or this region, equation
(lSa) becomes

Since the conormal v lies in the surface ~ (and also in ~),
the integral over 21 will vanikh because p is zero thereon.
Further, on 2., b/&=b/bz and d~=dz dy. Equation (lSb)
now become

(19a)

The integral over ~ in equation (19a) will be greatly
simpli6ed if one talms d~=du @, where ds is an element of
length normal to dv, and lying in the plane & It can be
show-n that under these conditions, & always lies in an
3= const. plane. Equation (19a) now becomes

(19b)

where the line CD is the intersection of the plane given by
equation (17) with the wing plan form.

Next, one can repeat this analysis for the region ahead
of ~, within 21 and ~, and below the wing plane. This
time, the surface & will form a portion of the bounding
surface, and a line integral across ~ will result. One can then
combine the relations obtained for the two regions and
relate an integral of potential across the wing surface to one
across the surface % A detailed application will be made
in a later section.

APPLICATIONS

The analysis discussed in the previous sections will now
be applied to some particular problems. These will include
a number of cases in which the coniignration of the wing or
body permits simple analytic solution of one or more of the
variational problems listed as equations (12) through (15).
Quasi-cylindrical bodiw of revolution were mentioned in the
Introduction as constituting a, class of shapes for which a
full solution to the minimum-drag problem is available.
The simulating axial source distribution, from which surface
shape can be calculated, is derived herein, leading, inci-
dentally, to an interesting identity involving integrals of
elliptic integrals. Finally, the results pertaining to integrals
of tig loading along oblique lines across the wing are
applied to a particular family of minimum-drag wings.

WINGS AND BODl?X3 WITH GIVEN BME AREA

By combining equations (Sa) and (12a) and using Green’s
formula, one gets for the drag of an opt@urn wing or bocly
tith the given base area

(20)

where q. is the free-stream dynamic pressure, (1/2)P~U.2.
Further evaluation of the drag by equation (20) requires
explicit lmowledge of the function x, obtained by solving the
potential problem of equations (12a). A large and pmticu-
larly interesting class of wings and bodies for which the
solution is immediate is characterized by the condition that
~=co.nst. on Cl. This implies that the outer rim l?,, the
intersection of the characteristic envelopes in figure 1, lies
in a plane normal to the free-stream direction. For example,
all wings with plan forms having fore-and-aft symmetry
satisfy this requirement as do also all pointed configurations
with subsonic edges so long as the nose and tail vertices
determine a line parallel to the free-stream direction.

In such cases, the solution of equations (12a) is

~=()

and equation (2o) gives for the drag

(21)

By combining this mith equation (12b) and eliminating A,
one gets

D A2—. —
g. Ps

(22)

The simplicity of equation (22) is remarkable, and ex-
amples of its diverse applicability are given below. Before
proceeding to these applications however, it should be notcd
that a similar result applies to all planar whigs whoso en-
veloping surfaces 21 and ~ intersect in any plane paral.kd
to the z asis. In this case,

Z=j=m (y+ bJ

on the curve Cl, where m(<p) is the slope of the plane of
171relative to the stream direction. The solution of equa-
tions (12a) once more gives x=O, and then, for tho clrrqg
from equation (20),

Again eliminattig A with the aid of equation (12b), ono has

:= L!P$)S
(24)
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Ducted body of revolution with prescribed end diame-
ters,—This problem has been considered by Parker in refer-
rmce 12, and by Nicolsky (see ref. 2). As shown in figure 4,

-1-

r

I

1! l-P----

\ , ~, /j ,/-

V

~1~
FIGUEE 4.—Optimum body with prescribed end radii.

n slmpe with minimum external wave drag is constructed so
as to have an initial radius Ri and a tial radius RI. In order
that the previous linear theory should apply, the restriction
is made thut the ratio P]l?l—RJ/Zshould be a small quantity.
If the origin of axes is in the front face of the body, the
fore-and-aft Mach surfaces are

z=p(r—Rz) , z—1=—13(T-RJ

nnd the curve Cl is a circle of radius ROwhere

Ro= (1+19R,+PR,)12P

From equation (22) drag is

(25a)

Equation (26a) is of particular interest since it represents a
yhole spectrum of results that extends from slender-body
theory, for pRJl and BRJ1small, to two-dimensional theory,
for PR,/1and BRJl large. The slender-body result leads
directly to tbe familiar Kiirmti ogive formula (ref. 13),

D= 4A2
z=~

(26b)

The two-dimensional result applies’ to the upper half of an
optimum wing (a flat plate), and is found to be

(25c).

where R is mean radius and a= (R1—RJ/J.

Elliptio plan form with afterbody.—The problem of given
base area along the rear edge of an elliptic wing was consid-
ered first by R. T. Jones (ref. 6). The iigure is a semi-idnite
body with a cylindrical shape drawn downstream of the
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FIGURE 5.—Elliptiu wing of given base area.

and the enveloping Mach surfaces are determined completely
by the fore-and-aft Mach cones with vertices along the

(
dy

)
supelaonic-edged portion of the plan form where /3~> 1 ~

that is, the abscissas of the vertices lie within the region

lzl<a2/(a’+t2&)~

The curve Cl has the equation

[(a;+ ~Y@)}?fl’+ (afi)’-l
—_

and is an ellipse with foci at (+6,0). Equation (22) then
yields / D A2

~=mz(ag+bafl) ~
(26a)

If drag coefficient C= is based on plan-form area, equation
(26a) can be re-expressed as ,

(26b)

sinca the aspect ratio of the wing is AR= [4b)/(~a). Perhaps
the most convenient formula for comparison follows from

equations (25b) and (26a) if the drag of the wing is axpressed
in terms of the drag of a Ktirm&nogive with the same length
and base area. The ratio is given by

The wave drag of the elliptic W@ with cylindrical after-
body, in the limit as aspect ratio approaches zero, is equal
to the drag of the K4rm6n ogive and afterbody. For finite
values of aspect ratio, the wave drag of the flat wing is
smaller than that of the body of revolution, the initial devi-
ation of the ratio from unity being proportional to (@2)z.

Tapered plan form with afterbody.-As a third example,
consider a plan form of arbitrary taper ratio with base area
along its trailing edge fixed. When the trailing edge is of
subsonic type a cylindrical afterbody is assumed added.
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As shown in fia-e 6, root chord is equal to 2% and span
equal to 2b. The tip chord is 2d so that taper ratio & and
aspect ratio AR may be introduced in the form

So long as the leading edge of the wing is supersonic the
characteristic trace Cl is as shown in figure 7 and is composed
of arcs of circles and straight lines, the radii of the inner and
outer circles being a/p and d/i9, respectively. The distance
between the centers of the *O outer circles is 2b. Once the
lending edge of the plan form is subsonic, the central circle
of figure 7 blankets the other parts of the figure and Cl is
the circle of radius a/f?.

FIGURE&-Tqered plan form with given base area.

when

\

(when

Zj,

=Y

/

h zb~
FIQUED7.—Charaoteristic trace for wing with tapered plan form.

The area S is the sum of elementary geometric areas and
is given by

where a, shown in figure 7, is given by,

From equations (22) and 25b), the minimum drag of tlm
tapered wing relative to the drag of the K&m6n ogive of
equd”length and baae area is

D T’
~.= L.%:.,]]T+(1+&)[(1+AO)’13’m-4 (1—b) q~—2(1—x09 arc Cos

2(1–&) 2131R(l+M

Special cases of interest are:
Rectangularwing (&=l)

(29)

Ditimond wing (XO=O) I

=1, &?R52 J-
1

Figure 8 shows a plot of D/D= againstPA? for the elliptic,
rectangular, tapered, and diamond plan forms. Base area I

(28)

and length of the wings are equal to these parameters for
the Kfirm&n ogive. For large values of I?217the relative
drag decreases as l/I?Z?. As the wing plan forms become
slender, drag of the elliptic and rectangular wings approaches
in the limit of vanishing PA? the drag of the ogive. The
tapered wing, on the other hand, has a value of drag equal
to that of the ogive for all values of taper ratio and aspect
~atio satkfying the inequality 2(1 —b) a LL42(1+h). This
relation is satisfied so long as the edges of the wing are sub-
sonic. ChaWes in sweep angle of the leading and trailing
edges produce no further change in the minimum drag of
the configuration so long as the base area is held fixed. The
value DK is the minimum drag for all such configurations
lying within thi fore-and-aft Mach cones from the nose and
tail of the wing. Except in the case of the rectanguhtr

!
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Fmmm S.—Optimum drag for various plan forms, given base areas.

plan form, the curves of D/DK have zero slope at their
peak values.

Yawed elliptic plan form with afterbody.-For given base
mea, the drag of an elliptic plan form at angle of yaw # can
be calculated from equation (24). In order to justify this
statement it is sufhcient to show that the characteristic
curve 1’1 lies in the plane Z=j=m(y+bo). The trace of
1’1in rLyz plane is, in fact, another ellipse and the dimensional
relationships between the plan form and the trace are as
shown in figure 9. It is convenient in the derivation of
these results to proceed inversely and to determine the
plan form as an envelope of curves given by the intersections
in tho xy plane of fore-and-aft facing cones with vertices
on rl. Since the streamwise position of the origin is of no
direct signifhncq the space curve 171may be assumed
given by

$_+=l, B>c
\ (31)

x= my, m<pJ

The Mach cones with vertices at the point (zI, YI,zI) on rl are

(E–--z,=i?i[(y(y,), +(z(z,),]’]
where

Zl=m’yI, z?=g(B~-y?)

The. parametric equation of the envelope in

(32)

the VZ,plane
is found from equation (32) with z= Oand the VI derivative
of the some expression, that is, by elimination of VIfrom the
relations

B’[(&my,)’–/(y(y, ),J=@@(B(y,-),’)

[B’m’-@’(B-@]y,= (mz-fi)B’

The envelope is, therefore,

(Bi–C’)ti-2mB’xy+ (m’P+@@#=@W(P–@) –m’&]
(33)

Equation (33) represents an ellipse so long as the initially
chosen m satisfies the inequali~

m2<~(B’-(?’)/B’ (34)

The elliptical plan form is fixed by its major and minor
axes and angle of yaw-. The relationship between the plan
form and trace curve is more conveniently carried out,
however, in terms of the three quantities 1, b, 8 where 1 is
streamwise length of the plan form, 2b its width, and z= by
is the line passing through the points on the plan form
where y=+ b.

Elementary calculations performed with ‘equation (33)
yield the following relations

l/2= (B’m’+~@)~ (35a)

b=(B*–~% (35b)

mB’
6=B’-C’

T

x=m

z Y

1

T
2C Y

!1

F1aum 9.—Yawed elliptiu wing and dmracteristio traoe.

(35C)

(35d)
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In figure 9 the plan form is also circumscribed by a
parallelogram with sid~ inclined’ at the Mach angle. The
equations of these lines are .

z=&f&t @—m)B, Z=—py+ @+-m)li

from which it follows that their outermost intersection points
are at y= +B and the line connecting the intersection points
is z=my.

The above results thus show that the Mach lines circum-
scribing the plan form can be used to determine the span of
the trace of rl and the angle of inclination of the plane of
I’1. The span of the plan form is, moreover, equal to the
distance between the foci of the elliptic trace.

From equations (24) and (25b) the drag of the wing and
afterbody relative to the drag of the K&m6n ogive of equal
length and base area is given by .

(36)

The results can be summarized as follows

D

{ }

l+flp+[(l+p’&-.4@&p]% $5
m= l–p?p+[(l+@$’)’-4 @&Hfi [(l+@%’1’:4!5%Wl~

(37)

439=
&’w’ ‘=2bJz

(38)

(39)

F~’e 10 is a plot of D/D= against angle of yaw for
il&.@ and B=4/7r, 4, 8. The smallest of these values
of aapect ratio corresponds to a circular plan form and ob-
viously must be independent of +; the drag ratio is D/D==
fi/2 and this is in ag~eement with equation (27) for the
special case of the circular wing. Several limitihg forms of

10
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Fmwm 10.—Optimum drag for yawed elliptio figs.

equation (37) are of interest in showing the variation of chg.
For example, when 8=0, the plan form is unyawed, ~=
41/T and *

D 1 1
m= (l+p~fi= [1+ (@R/4y]J~

as given in equation (27). This relation furnishes the values
of DID= in &me 10 at $=90°. If 3:=1 and ~#0 one has
A?=rn, ~=arc tan ~ and

This is the general drag relation for the yawed wing whim
aspect ratio b&omes iniinite. It is to be noted that drag
remains finite except when the angle of yaw is e~ual to the
free-stream Mach angle. In figure 10 the drag curm for
iniinite aspect ratio must therefore have a singularity at
Y=45”. If 3~ 1 and g+O so that aspect ratio remains
finite, it fo~ows that ++0 and D/D== 1.

General results in connection with minimum drag with
fixed base area,—The co,pnection between the Lagmngo
multipliers of the variational problems (see eqs, (12) through
(15)) and certain quantities in the combined flow field has
been mentioned. Another interesting interpretation for the

I Parameter A can be found. In the &se w&m f=const. on
Cl, k can be evaluated explicitly in terms of the-geometry in
the plane of l?,;-from equations (12b) and (22)

(40)

Equation (40) statm that —h/qmis equal to the pressure co-
efficient predicted on the linearized theory for the unidimen-
sional duct flow bounded internality and externally by tho
characteristic traces, that is, by the curves Cl and 02, M in
6gure 2. By the other interpretation, h/q_is also the preasum
coefficient in the combined flow field. , This result can also
be generalized to the case where x=f=my+bo by sweeping
back the entrance to the duct by the same amount as tho
plane of I’l.

Another point that should be made in regard to the
>ptimum configurations for which f= O on 1’1follows from
?quation (22). That is, the K&rm6n ogive has the gr@esL
mlue of minimum drag for given length, base area, and Mach
~umber. This follows directly from equation (22) by noting
;hat the area S is a minimum when the trace Cl is the circlo
~mected with the K&rm&nogive of the prescribed length
md base area. The curves in iigure 8 show this result clearly.

The-final result of a general nature to be noted hem is
‘ound by comparing equations (12a) and (14a), the mini-
mizingconditions for given base area smd for given lift, ro-
Ipectively. If dii7erences of over-all sign (becaum of the
Iuatiatic dependence of drag upon x) are disregarded, tho
twoproblems will lead to the same x, hence the samo drag, if

Vzf=() in S’

2qmo=~ (Xfz) on Cz
}

(41)
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It is found that a supe~onic-edged wing with a straight
supersonic trailing edge, parallel to x=ky, leads to a function
f which satisfies equations (41). If the trailing edge is -

x–~y=a (k<p)

then the surfnce ZZ (see @. 1) is an inclined plane:

z=f(y,z)=ky— (/Y-?t2);*z+a (2>0)

SOthat

f.= – (&–@i ‘

From the second of equations (41),

2q.u= – (&–--l?)%

The drags of the two cases are equal, giving, by equations
(14b) and (12b),

~_ (&-W6 L
2 z

Thus one has the result that if the minimum drag due to lift
of a supersonic-edged wing with a straight supemonic trailing
edge parallel to z=~y is known, then a nonlifting wing of the
mmo plan form and with base area given by

will have the same optimum drag.

WINGS AND BODIZS WITH GIVEN VOLUME

Tho variational problem in terms of x for the case of
prescribed volume with zero base area (eqs. (13)) contains
an arbitrary constant k whose magnitude is to be deter-
mined by application of the zero base-area condition to the-.
solution of the boundary-value problem. Thus set

X+ti [f’+kf~ (Y’+z9]=$W,Z)

The problem in terms of ~ is then, by equations (13),

Vw=o inL9
1

on C2

}
(42)

Q=2*(f2+’f+%70””J

The closure condition can be expressed as

u
(fA,+fxz) @ ~z=o

8

which becomes, after an application of Green’s theorem,

-x!!!.- ks.
2pJJm -sc,fMQ-4*9d’ ’43)

Clearly now, if f=O on C,, also k=O. Again, as in the given
base-area case, proper positioning of the origin can simplify
the analysis.

fi~~5974&79

Quasi-cylindrical body of given volume.-The body and
notation are shown in @e 11. The external wave drag is
to be minimized under the conditions that volume is iked
and base area is zero.

r

f

/< >\

,’ l\’\
/ ll\

‘\\//’
‘\\ / /’

\\~/

~~~

FIGUFLE1l.—Optimu& body of revolution with given volume.

In this case, ~ is the surface of the conical frustum, whose
equation is

z=f(r) =13(h+&-r) ; h=l/2P

Since f=O on ~ ,in this case, the remarks on k, just above,
apply, and the boundary-value problem is

(v% x+ &f2).-_& ~ s
a (x+*fj=o on Cl

\

(44a)
z

X=o on ClJ

Since Cl‘and CSare circles, and the problem is independent
of the peripheral variable 0, the solution of equations (44a)
can be written in the form

, IJP ( )—=+ a#+h+cln ~
‘+2PJJ. P. .

@4b)

where a, b, c are to be determined from the boundary condi-
tions. One easily fl.ndsthat

The drag is then determined as

R-1-h
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From equation (13b), the parameter p can be replaced by
2D/V, giving ihdy

where u= PRJ1,and

c(u)=* { (1+4U) [(l+2u)’–l2uq+64u4ln ~
}

(46’)

The result of equation (45), as in the case of given base
arm, covers the entire speotrnm of fineness ratios and yields,
in its limiting forms, the results of two-dimensional airfoil
theory (biconvex section) and slender-body theory. The
lattm case, which is the Sears-Haack sknder body with drag
D8_E (refs. 14 and 15), corresponds to u=O. Equation (45)
then becomes

Ds.= 128V~_——
!& ~1’

The above problem was considered previously by Heaslet
and Nler (ref. 16) without recourse to the present techniques
but, rather, by minimihg after expwshg dmg in terms of
the source distribution that could be assumed to generate
the external shape of the body. In this approach, it becomes
necessary to find first the sourcedistribution function, under
minimizing cxmditions, and to calculate drag and volume
subsequently. The details of the calculation are thus less
direct since the desired quantities are expressed as integrals
involving the hyperbolic influence function of the supersonic
source. In reference 16, the function C(U) of equation (46)
appeared in the form (in a modified notation)

Jc(u)=;:[(V+2U) (1–q+2u)]q71(l-? 7)E–

U(l—4U) (K—E)]dq

where K and E are elliptic integrals of first and second kind,
respectively, of modulus

[

q(l—q)

1
Mk=(7?+w(1–7?+2U)

The immediate advantage of equation (46) is, of course, the
natu.@ one provided by any analytic representation with
its precise determination of magnitude and rate of change.
From a disparate point of view, the equivalence of the two
results gives not only a new fundamental identity in the
theory of elliptic functions,, but also indicates a method
whereby further identiti- may be generated. From the
standpoint of direct application, however, the results of
reference 16 remain unmodified. The calculations that were
used to plot the variation of C(u) were found to check to at
least four s~cant figures with the present formula, and
thus provided a satisfy@ confirmation of the numerical
techniques used in the original evaluation.

Elliptic wings of given volume.-A9 noted previously, a
wing of elliptic plan form leads to a boundary curve Cl that

is also an ellipse. Figure 12 show’ the wing, the bounclmy
curves Cl and C2,and the region i-$.Let Cl be given by

It+-i,#=1

T
2a

-1

T
2C

1

FIGURE12.—Elliptio wing and oharaoteriatio tmoe.

The curve C. is now merely a segment of the v axis. The
solution of the problem -whereminimum drag is sought, for
given volume and zero base area, is eased by the fact that
by manipulation of equation (6b), using the extremum
conditions of equations (13) (with k= O), the expression
for the volume can be put in the form

V.–g
M )~j’, dydz

‘+2pJJm
‘6

(47)

Thus, explicit determination of x from equations (13a) is
avoided, and the complicated expression for j need not bo
exhibited; only the fact that it vanishes on the outer bound-
ary curve Cl is required. It is found that

pllw’ y’ z’L f“-– —‘+2pJ7. (2P5J. B+ P F%-- 1)
(48)

satisfies equations (13a) (with k= O). Substitution of equn-
tion (48) in equation (47) yields

where S (= TBC) is the area enclosed by Cl. Now, from
equation (13b), the drag can be evahmted as

(49n)
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Finally, in terms of the original wing parameters (see
fig, 12),

B’=a%+&9c’

p2=p-2@

(49b)

which agrees with the result of Jones in reference 6. (A
typographical error in the reference has been corrected in
equation (49b).)

It might be supposed that, once again, a simple imkmsion
of the above results would lead to the minimum-drag result
for a yawed elliptic wing of given volume. This, unfortu-
nately, is not the case. The drag found by the present
method is much lower than the know-n value, being correct
only in the limiting case of zero yaw, as above. The reason
is, presumably, that strict closure along the trailing edge
has not been enforced, only the condition that base area
vanish. An unreal wing has therefore been evolved in the
yawed case, with patches of negative base area where upper
rmd Iowcr surfaces have crossed. It does not seem feasible
to cmforce pointwise closure of the trailing edge in conjunc-
tion with the present method for drag calculation. Thus,
caution is necessary when using this method for given volume
problems. Of course, this difficulty does not arise when
trmting lifting surfaces, for in that case, a negative ordinate
for the upper surface is of no concern.

OASES OFGIVENI.IkYl’ANDMOMENT

A family of wings with supersonic edges,-Consider the
family of wings whose plan forms are all portions of the
hyperbola asymptotic to hfach lines through the point
(–d,O,O). Tho equation of the leading edge is

and the trailing edge is

X=1

where the quantities d and 1 tie shomn in figure 13. The
root chord of the resulting wing is 1. If d+O, the wing be-
comes a triangle with sonic edges, and if d/1>> 1, the wing
has very large span compared with its chord.

Tlm surface & (fig. 1) is composed of a, piLirof inclined
planes

Z=j(y,z) =L—f?lzl

and the boundary curve Cl (iig. 13). is made
pmabolns

B’Y’=(M+O(l-Z91ZI)

If minimum drag for fixed lift and center of

(50)a

up of two

(50b)

prefmme is
sought for the win-~ of this family, the varinti& leads to
tlm problem

T
d

+

X+ d. -flY-p/’ .\
\

/ Y.
/

/

\‘ x

z

&

s

-Y

‘ C2

FIGURE13.—Hyperbolic-edged wing and oharaoteristic trace.

vyx+’u.~zf)=0 ins’ ]

[ 1;n X+um(u—x.7)z+u.Tz.f =0 on Cz
}

(51)

X=o on Cl J_

where % is the coordinate of the center of prewme. A
simple, exact solution of equations (51) follows directly if

x~=d+~l

in which case

In this event, the drag is given by

L2

() d+~lg=: p ~
[1(2d+l)]Jf (53)

where L is the given lift. Since the wing area is

the drag parameter is, written in terms of f=d/1

Figure 14 shows the variation of the drag with f. This
latter psirameter is, in geometrical terms, /P@, where ~ is
the radius of curvature of the leading edge at the apex, nnd
1 is root chord. As ~ varies from O to w, the plan form
ranges from a sonic-edged triangle to a wing that has nearly
a parabolic leading edge.
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In the limit {+0, when a sonic-edged triangular wing re-
sults, t!he value of the drag parameter given by equatiQn
(54) is

c.
—=0.225PC.’ (55)

This value is in agreement with the result of reference 8 for
center of pressure at 60 percent of root chord. Also, the
appro.sinmte result for given lift alone horn reference 10 k
quite close to that of equation (55), being 0.223. This
would indicate that the center of pressure is near the 60-
percent-ckord position for given lift. In fact, from the
results of reference 8, it is found t.hrttthe center of pressure
for given lift alone lies nt 63 percant of the chord.

At the other extreme, ~~OJ, the wing plan form is very
nearly a parabolic segment. The center of arm of such rL
pambolic segment lies at 00 percent of the chord, which
“mdicateathat the loading is uniform over the wing. This
is the correct result for minimum drag with given lift in
two-dimensional flow, and the wing is indeed becoming
nearly tt two-dimensional case at ~-m. .

DETERMINATION Ot? WJRFACE SHAPE OF OPTIMUM BODIES OF
REVOLUTION

Generally speaking, the informtttion gained by solving a
minimum-drag problem according to the method used in
this report includes knowledge of the function x, which is
of course the perturbation potential p evaluated in the
rear enveloping characteristic surface & of figure 1. It
would be useful if this information could be used then to
determine the singularity distribution, and ultimately the
surface shape, that gives rise to the flow field having the
optimal properties in question. In general, however, no
such method at present exists,2although various approaches
involviug some degree of approximation have been indicated
(ref. S). In one case, where the singularities lie on a single
line, a complete analytical solution is possible, and wilLbe
considered next.

Duoted body of revolution with prescribed base area.-ll%e
potential due to a line distribution of sources is given by

where B(z) is the source strength per unit length, and the
lower limit, z =–/3R, indicatesthe darting point for the dis-

2Slncatbe completfen0[the workof tbfarem~ the antborshaveseena ww by E. TV.
(kabam, “A Geemt?hkl ProbkmRelatedtotheOptkmnnDbtrfbntfon afLfft ona Planar
IWngfn SupemonfoFlow;’ Rep. SM-ZS021,Dor@s Afraaft Co.,Nov. Km. Intbbpapm,
nsiution h gfven to theproblemofdekmfnfngIlftdfntrfbntfonon8wfngwhenobllqne
lfnefn@mlsoftbehmdJngtakmnm.mtlmwfngaraknam.Nowtbelfnesalongwhkh
SUCIIfnkgmhareknownallIfofnthesnyrmnfo“zoneefeflenea”ameelatedwfthagiven
Nlnt,andCkahammaka?aatntlnuatfonoftberanctlen represmtlnEthe fnkgratal lmdfng
as a funetfonofthe angleofthe obllqneline m that the integratedlmdfngc-anbo cunsklered
knownferaRlfne2 tbronghaglven fmlnt. The fn@aleqnatfon ~gthefn@ated
lmdfngfnterma 041aalllmdblgfE&linv@a ~bly, anan@orrsplW%i~fl
holdforthotbl&IESS- EorimifesefravahItfmI,howmer,allobllqrrellmsartthesfngu-
Iarltydistributionfna@ntj nodewdenca on tbe @e ofobffqnftyex&@and the fnverw
problemofSndfngthe dnguhri~ ~ can b.3KIkd WftbOUtdfftknlty.
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FIGURE14_-Varintion of optimum drag for hyporbolio-edged wings.

tribution; l?(z) =0 for x ~ —sR. In this,R isthe radius of
the control cylinder OGwhich the boundary conditions are
satisfied; the initial point of the body is x=O when the sources
start at z= —pi?.

In this coordinate system, the surface ~ is tho conicnl
frustum given by

z=j(T)=Z+r9R-13r= 13(2h+R-T) ; 2@=l

The function x is found by inserting this value for z in the
above potential reIation;

1

J
h9(2a+R-2r)

x(r) = —~ _pB
B(xl)dx,

@(2h+R) –zl]~ @(2h+R–2r)–zl]J~

(bOn)
Now set

B(@=~(2h+R)-zJfi B(scI)
1

9(2h+R) –t

J

(M3b)
p(2h+3)–2&=t; ‘?’- ~

and equation (56a) becomes

d
where r=t+~R and a= Zl+PR. l?urther,Bince $=—2P ~)

the last equation can be written

(67)

Equation (57) is recognized as the dual relntion to the Abel
integral equation, namely

(58)

,
.
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Thus, when x, is known, the evaluation of B (z), hence of
l?(x), is immediate.

In order to determine x and hence v, one has, from equa-
tions (12a)

)@(x+&f ‘0 in R<r<R+h

(a x++ f)=O at T=R&

X=o at r=R+h

Thus, the solution for x is’redily seen to be

X=2%= (r–R–h)

nncl 60

%=&
The. solution for the source-distribution function can now be
found by using equation (58);

which checks with the rw.dt of reference 12, since, by equa-
~ions (12b) and (21), it is found that

The. surface shape of the body is now readily found, and this
has been done in reference 16.

Ducted body of revolution of given volume,-For thh
case, it is convenient to place the origin at the centar of the
body, sinco ~ is alrendy known from equation (44b). The
samo solution, as given by equation (58) with appropriate
chrmges, can be used, and the resulting source-distribution
function is

B (z)=–2&
{

(z–2x) [(z+i?R) (l+@-x)lfi–

2plP Cos-’ &#&
}

where for this expression the source distribution starts at
x= –@R m in the last emunple. From equations (13b) and
(45), one finds that

where C (u) is defied in equation (46). The source strength
is then

~(z)=zJ4@)
{

= (1–2z)[(z+13R) (l+8R–z)]J~–

1–2X
2PR’ cm-’ LP2PR}

(60)

Again, determination of the shape is made in reference 16.

DETERMINATION OF OBHQUE INTEGRATED LOADINGS

A procedure has been outlined for relating integrals of the
perturbation potential P taken across various lines in the
surface of a wing and in the rear characteristic surface I&
(see, e. g., eq. (19b)). The analysis will now be tied out
in detail for the family of hyperbolic-edged wings treated
above. For the special case of th~sonic-edged member of the
family, some of the geometrical relationships are shown in
figure 3. The auxiliary plane & (given.by eq. (17)) is seen
to cut the wing plane 20 in the line CD, and to cut the lower
part of the ~ surface in the line EF. Clearly, as @e inclina-
tion of C!D, or the chordwim position of ra, is changed, the
line will eventually cease cutting the right leading edge of
-the wing and intersect the wing trailing edge. These regimes
are distinguished by dividing the range of ~ into Region I
and Region II (as shown in fig. 15), whose bounds are
functions of the angle 0;

FIGURE16.—Dividing points distinguishingregions I and II. .

Region I: XO=–d(l–sin 9) 5~SXl=l~mcoS6

}
(61)

Region II: Xl <%5X2=1+4- cos O

where d and 1 are defined as in figure 13,.~d cos 0=9 Wm.
The regions will be considered in order. -

Region I.—The integral relation that results &m applica-
tion of Green’s theorem to the region bounded by 21, a and
20 (see @ 3) and for which z>O has been given as equation
(19b). If Green’s theorem (eq. (18a)) is applied to the lower
portion, the following relation results:
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Using again the coordinates v, s in
finds

-Li@’’’+[s’’’’’’’’d’-

the separate planes, one

The notation p (z&J, etc., means tlmt q k to be evaluated
along the intersection of the surfaces & and&

In order to express the element A in terrm of, say, dy
rdong the various lines, one can set Up the coordinate trans-
formation to express the 2V,V,S’system as a rigid rotation of
the X;Y,2system. It is thereby found that along CD, o?s=dy
sin 0, and along l?l’, ds=dy. The relations (19b) and (62)
then become

; SSpdz dy+sin oJ D@OZJdy=O (z>”) (63a)

-;JJ’~:’y+’J:’’~,”’:~-*in’I’(’o’J’y=” ‘(z<”)
x~

(63b)

whore the z>O, z<O me necessary because p is discontinuous
at the z=O plane.

If the limits of intqywtion for the surface integral over
20 are inserted and the equations d.iilerentiatedwith respect
to b (recall that p=O on the surface 2J, equations (63)
become

where once ~aain the results upply respectively to the cases
where z approaches zero from above and from below.

Equation (64a) is seen to be a relation between integgals
of perturbation components taken along the same oblique
line across a supemonic-edged wing. If the integrated
loading

(65)

is introduced, equation (64a) becomes 3–

L(Xo,e) 4

J
D

—_
!Z- ––ump sine c

wfro+~ COSOy,y)dy (66)

where w is the vertical perturbation component. Th~, the
integrated loading is proportional to the averaged wing.
slope, both taken along the same line across the wing; the

sTheauthmm tndebtedtoPref_ P..&~ andDr.N. E.Grebnmforpefnt-
fngmtnnemufnthedefinitionofthelfneelwmntdswhfehfntmdnmdenfnmnmtde~d-
cncoon o fn the wrdonn of the Present fornndes(63),(G?),md (70)@en In the orfgind
NAOATechnkal Note 4237(.se9fcotnob 1).

line in question lying somewhere in t-ho “zone of silence”
corresponding to the point (%,0,0). Once again, these
results axe not contined to the case of optimum wings,

Nowretum to equations (64). It is necessary to deterxnino
the argument of pin the last integral on the right in equation
(64b), and this is done by solvhqg for x and z in terms of y
from the equations of 2? and 23;

&: X=l+pz

&: X=ro+i? CosL9y-fl sin Oz
One tick that

[
1 ti e+xo+~ cos @ ‘l+xo+~ cos @

q(z~=p I+ Sine ‘~’ p(l+sin e) 1

If the differentiation with respect to ~ is ‘now porformcd in
equation (64b), and the resndt subtracted from equot,ion
(64a), one gets the relation

J
D

9AO+B ms ey,y)dy= —
1

c /3sin O(l+sin 0)

-J
F
Xzdy

‘p sin e(:+sin e)

J F(pu+’lo)d~
E

(67)

Making ,use of the definition of integmtecl lending given in
equation (65), one has &ally

L(@) 4

J
F

—_

!l. ––UJ3 sin e(l+sin 0) ~
x,dg (6s)

which relates the integrated loading for a point in region I
to an integral of the function ~ across tho rear mveloping
surface &. This form of the result is well adapted to tho
case of optimum wings since, in general, surfnco values of
the slope are not known, whereas, in the present mothocl of
optimizing, the function ~ is known.

Region If,-The plane ~ now intersects the trailing cclgo
of the wing, and the boundary of the region of integrntiou
will include a portion of the rear enveloping surfnco Zz for
both z>O and z <O. Figure 16 shows a trace in an z= const.

T c
Y

I

1

E
I

Y

H

FIGURE16.—Trace of intersections of cutting plane Withrem surfmc,
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plane of the lines of intersection of the cutting plane %3with
both upper and lower portiom of ~. The oblique line across
the wing intersecting the trailing edge is also shown, and
the figure serves to defke the notation used in this section.

The formulas resulting from application of equation (18a)
to both upper and lower portions of the volume bounded by
the forward Mach surface, the rear enveloping surface, and
the plane ~ are as follows:

SD

J
$9(z&)ds+ *p(zo%)ds=o (z>O) (69a)

c D

J
D

J
*

$o(z@3)ds+ f@@&iS=() (z<O) (69b)
o D

In these equat;ons, the limit indicated by an asterisk is the
intersection of lending and” trailing edges of the vving. Once
again tho equatiom are differentiated tith respect to zu and

the results combined. Thus one hds for a point G in
region II (see eqs. (61))

For the case of interest here, ~ is a constant, as is seen
from equation (52). After substituting the values for x and
w in equations (68) and (7o), and using the dimensionless
variables

one gets the following raults for the i.mtegratedloading:
Region I:

lL(~,,e) 3 ~P—llE—.
L ~~ sin O(l+sin 0)

(71a)

Region H:

lL(&,o) 3 (l+2r)–qD’+ 3
L—---= 4(1+2~)~5 Cos e 2.JqZ-

TH—7D ~D—%’B

l—sin e+l+sine
sin 8

(71b)
vrhere

~F= (l+sin 0)-1{ (1+2~) KM 8+

{2(1+X) (l+sin e) [:o+t(l–sin 0)1}

4’(l+M) O+sin o[go+ro-sin 0)1}

m= (1—sin 0)-1 {(1+2~) cos ~—

3/2(l+2r) (l—sin e)[to+l’(l+sin e)]}

qD= (1 —to)/cos e

In iigure 17 these integrated loadings are drawn for the
three members of the family corresponding to ~=clJl=O,
1.5, 5, with B=l and M= O”, 15°, 30°, 45° in each case.
The dimensionless quantity plotted is

3.(

2!

2.(

Pifo,e)

1.

IJ

P(&#) =lL(&,o)/L

T
Y

x

o Lo 20
(cl] &

1.5–

I.0–
P(t@

45°

-1.0 0 1.0 20 3,0

P(&#)

/

45°
I

1
-3.0 -2.0 -1.0 c 1.0 20 3.0 4.0

(c)
(0

I?mmm 17.—Integrated loadings for family of wings with hyperbolic
alga.
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Ik ie to be observed that when P= O”, o=u/2 and region II
ceases to e.sist. In this case, the integrated loading is
precisely the chord loading of the wing. One then gets

ZL(W) 3 r
L

—.2, & (72)

independent of the shape parameter ~.

Aams AERONAUTICALLABORATORY
IVATIONALADVISORYCommrrBE FORADRON~UTICS

MOFF~ l?mLD, CmIF., iVov. 2?9,1967
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